Nonlinear Ordinary Differential Equations
نویسنده
چکیده
Most physical processes are modeled by differential equations. First order ordinary differential equations, also known as dynamical systems, arise in a wide range of applications, including population dynamics, mechanical systems, planetary motion, ecology, chemical diffusion, etc., etc. See [19, 72,ODES] for additional material and applications. The goal of this chapter is to study and solve initial value problems for nonlinear systems of ordinary differential equations. Of course, very few nonlinear systems can be solved explicitly, and so one must typically rely on a suitable numerical scheme in order to approximate the solution. However, numerical schemes do not always give accurate results. Without some basic theoretical understanding of the nature of solutions, equilibrium points, and their stability, one would not be able to understand when numerical solutions (even those provided by standard well-used packages) are to be trusted. Moreover, when testing a numerical scheme, it helps to have already assembled a repertoire of nonlinear problems in which one already knows one or more explicit analytic solutions. Further tests and theoretical results can be based on first integrals (also known as conservation laws) or, more generally, Lyapunov functions. Although we have only space to touch on these topics briefly, but, we hope, this will whet the reader’s appetite for delving into this subject in more depth. The references [19, 46, 72, 80, 85] can be profitably consulted. Our overriding emphasis will be on those properties of solutions that have physical relevance. Finding a solution to a differential equation is not be so important if that solution never appears in the physical model represented by the system, or is only realized in exceptional circumstances. Thus, equilibrium solutions, which correspond to configurations in which the physical system does not move, only occur in everyday a physics if they are stable. An unstable equilibrium will not appear in practice, since slight perturbations in the system or its physical surroundings will immediately dislodge the system far away from equilibrium. Finally, we present a few of the most basic numerical solution techniques for ordinary differential equations. We begin with the most basic Euler scheme, and work up to the Runge–Kutta fourth order method, which is one of the most popular methods for everyday applications.
منابع مشابه
Differential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell
In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملInvariant functions for solving multiplicative discrete and continuous ordinary differential equations
In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...
متن کاملHomotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations
Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...
متن کاملSolving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks
In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کامل